Parabolic partial differential equations (PDEs) are fundamental in modelling a wide range of diffusion processes in physics, finance and engineering. The numerical approximation of these equations ...
Partial differential equations (PDE) describe the behavior of fluids, structures, heat transfer, wave propagation, and other physical phenomena of scientific and engineering interest. This course ...
Discontinuous Galerkin (DG) methods represent a versatile and robust class of numerical schemes for approximating solutions to partial differential equations (PDEs). Combining elements of finite ...
Covers finite difference, finite element, finite volume, pseudo-spectral, and spectral methods for elliptic, parabolic, and hyperbolic partial differential equations. Prereq., APPM 5600. Recommended ...
SIAM Journal on Numerical Analysis, Vol. 7, No. 1 (Mar., 1970), pp. 47-66 (20 pages) Linear one step methods of a novel design are given for the numerical solution of stiff systems of ordinary ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results